Big Data in Railroad Engineering

Dr. Allan M Zarembski
Director of Railroad Engineering and Safety Program
Department of Civil and Environmental Engineering
University of Delaware
Newark, Delaware

dramz@udel.edu

Introduction

- Railroad industry is an infrastructure intensive industry that relies on significant amounts of information and data for operations and maintenance.
- In US, railroad data collection encompasses the full range of railroad activities
 - Monitoring over 30,000, 000 car loads (shipments) per year,
 - Managing railroad fleet of over 1.3 Million rail cars and 24,000 locomotives
 - Managing the infrastructure of over 330,000 km (200,000 miles) of track, which is owned and maintained by the railroads themselves.
 - Focus of this presentation
 - US railroad industry's annual revenues are of the order of \$60
 Billion
 - Annual capital program over \$15 Billion a year.
- US represents approximately 20% of worldwide RR industry

Evolution of Infrastructure Data Collection

- RR inspection and management of the infrastructure has evolved from a subjective activity performed by a large labor force geographically distributed along the railroad lines, to an objective, technology active, data focused centrally managed activity.
- Current inspection makes use of a broad range of inspection vehicle to collect data
- New generation of maintenance management software systems analyzes and interprets this data
- Railroads represent an industry that is starting to make extensive use of its "big data"
 - to optimize its capital infrastructure and safely manage its operations while keeping costs under control.

Major US Railroads

- Six largest US railroads have between 20,000 and 40,000 miles of track (30,000 and 60,000+ km) each
 - Larger than most national railroads
- Data management and analysis of big data has become of growing importance for these major railroads.

Infrastructure Inspection

- Most infrastructure inspection is performed from rail inspection vehicles
 - High Speed track geometry inspection vehicles
 - Ultrasonic rail test vehicles
 - Rail wear inspection vehicles (laser wear measurement)
 - Gauge restraint measurement vehicles
 - Ballast profile and subsurface inspection vehicles (LIDAR and GPR)
 - Tie (sleeper) inspection systems
 - Dynamic load measurement systems

Supplemental Infrastructure Inspection

- Supplemented by track based measurements of vehicle condition such as:
 - Wheel load/impact detectors
 - Lateral force detectors
 - L/V detectors
 - Overheated bearing detectors
 - Dragging equipment detectors
- On a busy mainline a detector would measure over 3 Million wheels a year

Track Geometry Data

- On board measurements every foot. Based on a system average frequency 1 inspection per mile per year, this would represent over 100,000,000 measurements per year with at least 12 channels of data collected at each measurement.
- Recorded exception data, stored in an active data base, represents approximately 70,000 measurements per year with at least 12 channels of data collected at each measurement

Rail Defect Data

- On board measurements on a continuous basis. Based on a system average frequency 1 inspection per km per year, this would represent over 36,000 km of inspection data
- Recorded exception or defect data, stored in an active data base, represents approximately 20,000 data sets per year.

Rail Inspection Data

- In addition to rail defect data, railroads now collect rail profile and wear data at the same frequency as track geometry data
 - Rail profile measurement systems mounted on track geometry cars
- Within the last 30 years US Railroads have gone from 3GB to almost 3000 GB (3 TB) of rail measurement data per annum
- This will continue to grow to include other elements like special track work where higher inspection density is required.

Vertical Track Interaction (VTI) Data

- Represents vehicle-track dynamic data as recorded by an inspection vehicle
 - Can be unmanned vehicle mounted Vertical Track Interaction measurement systems.
- Data is collected continuously but only values that exceed specific exception values set by the railroad are recorded.
- Based on partial coverage of the network, represents approximately 1,000, 000 stored data records per year.

Cross-Ties (Sleepers)

- Cross-ties represent another area of Big Data in railroads.
- Typically there are 3250 ties per mile so that a railroad with 22,000 miles would have over 70 million ties.
- These ties are usually inspected on a four to five year cycle,
 - 15 to 17 Million ties per year are inspected as to their condition and whether they need replacement.
- This data collected is uploaded into the railroad system database and then used to determine required annual replacement ties by mile of track.
 - Typically, a railroad of this size would replace 2 Million ties a year.

Levels of Data Analysis

- At the first level, basic threshold analyses are performed to determine if the measured value exceed a predefined threshold to include both maintenance and safety thresholds
- At the second level, this data is entered into large data bases to allow for historical monitoring, trend analysis and first generation forecasting of rates of degradation or failure
- At the third level, this data is used in state of the art statistical analyses such a multivariate regression analysis or Multivariate Adaptive Regressive Splines (MARS) analysis to develop higher order forecasting and trend analysis
- At the next level, these forecasting models are combined with maintenance planning models for determination of maintenance requirements and scheduling of maintenance activities across railroad
 - Maintenance planning and management models often combine economic analyses with the projected failure analyses to calculate the optimum maintenance and replacement requirements

Big Data Analyses Analysis

 As the size and extent of the data bases continue to grow, more refined statistical analyses such a multivariate regression analysis or Multivariate Adaptive Regressive Splines (MARS) analysis are used to develop higher order forecasting and trend analysis

Sample MARS Analysis

 a MARS application to geometry and rail defect data for a big data application, representing over 500,000 data records

```
MGT = 477.37 + 86.6031(BF_2) + 28.6544(BF_4) - 47.8978(BF_5)
```

```
BF_2 = max(0, 6- WARP)
WARP = number of WARP Defects
BF_4 = max(0, 18- RAIL\_CANT)
RAIL\_CANT = number of rail cant defects
BF_5 = max(0, ALIGNMENT- 0)
ALIGNMENT = number of alignment defects
```

Max MGT (no defects) = 1513 MGT

Summary

- Railroad industry has entered into the era of "Big data" with large data bases and large volumes of data
- Strong need to separate derive information from "mountain of data"
- As inspection technologies improve and become more widespread, this volume of data will continue to increase
- Need for Big Data type analyses tools to address this data challenge
- Mini-conference on Big Data in RR Maintenance Planning scheduled for Decembers 2015 at University of Delaware